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2Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK
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http://www.mrao.cam.ac.uk/~cli¬ord)

The late 18th and 19th centuries were times of great mathematical progress. Many
new mathematical systems and languages were introduced by some of the millen-
nium’s greatest mathematicians. Amongst these were the algebras of Cli¬ord and
Grassmann. While these algebras caused considerable interest at the time, they were
largely abandoned with the introduction of what people saw as a more straight-
forward and more generally applicable algebra: the vector algebra of Gibbs. This
was e¬ectively the end of the search for a unifying mathematical language and the
beginning of a proliferation of novel algebraic systems, created as and when they
were needed; for example, spinor algebra, matrix and tensor algebra, di¬erential
forms, etc.

In this paper we will chart the resurgence of the algebras of Cli¬ord and Grassmann
in the form of a framework known as geometric algebra (GA). Geometric algebra was
pioneered in the mid-1960s by the American physicist and mathematician, David
Hestenes. It has taken the best part of 40 years but there are signs that his claim
that GA is the universal language for physics and mathematics is now beginning to
take a very real form. Throughout the world there are an increasing number of groups
who apply GA to a range of problems from many scienti c  elds. While providing an
immensely powerful mathematical framework in which the most advanced concepts
of quantum mechanics, relativity, electromagnetism, etc., can be expressed, it is
claimed that GA is also simple enough to be taught to schoolchildren! In this paper
we will review the development and recent progress of GA and discuss whether it is
indeed the unifying language for the physics and mathematics of the 21st century.
The examples we will use for illustration will be taken from a number of areas of
physics and engineering.

Keywords: geometric/Cli® ord algebra; geometry; quantum mechanics;
relativity; gravity; computer vision; buckling

1. Introduction

Today, high school students studying for A levels, or their equivalent, in the sciences
will be introduced to the concept of vectors|directed line segments|and taught
how to manipulate vectors using classical vector algebra. This is e¬ectively the alge-
bra introduced by Gibbs towards the end of the 19th century; it has changed little
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Figure 1. William Rowan Hamilton 1805{1865. Inventor of quaternions, and
one of the key scienti¯c ¯gures of the 19th century.

since then. Those students become practised in the art of vector algebra and see how
successful it is in expressing much of two- and three-dimensional geometry. Manip-
ulation of the system becomes almost second nature. One can see how hard it then
is to abandon this familiar, and apparently successful, system in favour of a new
algebra (geometric algebra (GA)) that has additional rules and unconventional con-
cepts. However, for a moderate investment of time and e¬ort put into learning GA,
the reward is to have at one’s disposal a tool that allows the user to penetrate into
even the most high-powered areas of current scienti c research. As we move into the
21st century, we have reached the stage where to do research in the physical sci-
ences is often to specialize in one, usually very limited, area. However, it has always
been the case that great advantages are to be gained from interactions between
 elds, something that is becoming increasingly di¯ cult but increasingly desirable.
We envisage that the new millennium will see the push for interdisciplinary activity
increase manyfold. In the following sections, we attempt to give the reader some
evidence that GA may be the best hope we currently have of attaining the goal of a
unifying mathematical language for modern science.

2. Some history

A problem that occupied many eminent mathematicians of the early 19th century
was how best to represent rotations mathematically in three dimensions, i.e. ordinary
space. Hamilton (see  gure 1) spent much of his later life working on this problem
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A uni¯ed mathematical language for the 21st century 23

Figure 2. Hermann Gunther Grassmann (1809{1877). German mathematician
and schoolteacher, famous for the algebra that now bears his name.

and eventually produced the quaternions, which were a generalization of the complex
numbers (see later) to three dimensions (Hamilton 1844). The algebra contains four
elements,

f1; i ; j ; kg;

which satisfy
i2 = j 2 = k2 = i j k = 1:

While the elements i ; j ; k are often referred to as vectors, we shall see later that they
do not have the properties of vectors. Despite the clear utility of the quaternions,
there was always a slight mystery and confusion over their nature and use. Today,
quaternions are still used to represent three-dimensional rotations in many  elds since
it is recognized that they are a very e¯ cient way of carrying out such operations.
However, the confusion still persists, and a deep and detailed understanding of the
quaternions has been lost to a generation.

While Hamilton was developing his quaternionic algebra, Grassmann (see  gure 2)
was formulating his own algebra (Grassman 1844, 1877), the key to which was the
introduction of the exterior or outer product ; we denote this outer product by ^, so
that the outer product of two vectors a and b is written as a ^ b. This product has
certain features. One such feature is its associativity, i.e.

a ^ (b ^ c) = (a ^ b) ^ c:

This tells us that the way in which we group the terms together in the outer product
does not matter. The other feature is anticommutativity, that is, if we reverse the

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


24 J. Lasenby, A. N. Lasenby and C. J. L. Doran

Figure 3. A portrait of William Kingdon Cli® ord, FRS (1845{1879), mathematician and
philosopher, by the Hon. John Collier. (Royal Society Library and Archives.)

order of vectors in the outer product we change its sign:

a ^ b = b^ a :

We are more used to dealing with a product that is commutative, i.e. multiplication
between two numbers, 2 5 = 5 2 = 10, but it turns out to be extremely useful
in many areas of physics, maths and engineering to have a product that does not
necessarily commute. By contrast, the inner product between two vectors, a and b,
written as a b (this produces a scalar whose magnitude is ab cos , where is the
angle between the vectors), is commutative, i.e.

a b = b a :

Grassmann, a German schoolteacher, was largely ignored during his lifetime, but
since his death his work has stimulated the fashionable areas of di® erential forms and
Grassmann (anticommuting) variables. The latter are fundamental to the foundation
of much of modern supersymmetry and superstring theory.

The next crucial stage of the story occurs in 1878 with the work of the English
mathematician, William Kingdon Cli¬ord (Cli¬ord 1878; see  gure 3). Cli¬ord was
one of the few mathematicians who had read and understood Grassmann’s work,
and in an attempt to unite the algebras of Hamilton and Grassmann into a single
structure, he introduced his own geometric algebra. In this algebra we have a single
geometric product formed by uniting the inner and outer products; this is associative

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


A uni¯ed mathematical language for the 21st century 25

like Grassmann’s product but also invertible, like products in Hamilton’s algebra.
In Cli¬ord’s geometric algebra, an equation of the type ab = C has the solution
b = a 1C, where a 1 exists and is known as the inverse of a . Neither the inner
nor the outer product possess this invertibility on their own. Much of the power of
geometric algebra lies in this property of invertibility.

Cli¬ord’s algebra combined all the advantages of quaternions with those of vector
geometry, so geometric algebra should then have gone forward as the main system for
mathematical physics. However, two events conspired against this. The  rst was Clif-
ford’s untimely death at the age of just 34, and the second was Gibbs’s introduction of
his vector calculus. Vector calculus was well suited to the theory of electromagnetism
as it stood at the end of the 19th century; this, and Gibbs’s considerable reputation,
meant that his system eclipsed the work of Cli¬ord and Grassmann. It is ironic that
Gibbs himself seems to have been convinced that Grassmann’s approach to multiple
algebras was the correct one.y With the arrival of special relativity, physicists real-
ized that they were in need of a system capable of handling four-dimensional space,
but, by this time, the crucial insights of Grassmann and Cli¬ord had long been lost
in the papers of the late 19th century.

In the 1920s, Cli¬ord algebra resurfaced as the algebra underlying quantum spin.
In particular, the algebra of Pauli and Dirac spin matrices became indispensable
in quantum theory. However, they were treated just as algebras: the geometrical
meaning had been lost. Accordingly, we will employ the term `Cli¬ord algebras’ when
the use is solely in formal algebra. When applied in its proper, geometric setting, we
use Cli¬ord’s own name of geometric algebra. This is also a concession to Grassmann,
who was actually the  rst to write down a geometric (Cli¬ord) product!

The situation remained largely unchanged until the 1960s, when David Hestenes
began to recover the geometric meaning behind the Pauli and Dirac algebras (Hes-
tenes 1966). Although his original motivation was to gain some insight into the nature
of quantum mechanics, he very soon realized that, properly applied, Cli¬ord’s system
was nothing less than a universal language for mathematics, physics and engineer-
ing. Again, this remarkable work was largely ignored for around 20 years, but today
interest in Hestenes’s system (Hestenes & Sobczyk 1984; Hestenes 1986) is gather-
ing momentum. There are now many groups around the world working on applying
geometric algebra to topics as diverse as black holes and cosmology, quantum tun-
nelling and quantum  eld theory, beam dynamics and buckling, computer vision and
robotics, protein folding, neural networks, and computer-aided design (Sommer 2000;
Doran et al . 1996; Baylis 1996; Lasenby et al . 1998). Exactly the same algebraic sys-
tem is used throughout, making it possible for people to make contributions across
a number of these  elds simultaneously.

3. Geometric algebra, a brief outline

In our geometric algebra we start out with scalars, i.e. ordinary numbers that have
a magnitude but no associated orientation, and vectors, i.e. directed line segments
with both magnitude and orientation/direction. Let us now take these vectors and
look a little more closely at the geometry behind Grassmann’s outer product. The
outer product between two vectors a and b is written as a ^ b and is a new quantity

y In the chapter on multiple algebras in Gibbs (1906), Gibbs goes to great length in his discussion of
the merits of the Grassmannian system.
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vector –– directed line segment

scalar

a
a      b = –b      a

b

a

b

bivectors –– oriented areas

a

c

(a      b)      c = a      (b      c)

a

c

bb

trivectors –– oriented volumes

Figure 4. Vectors, bivectors and trivectors shown as oriented geometric objects.

called a bivector. The bivector a ^ b is the directed area swept out by the two vectors
a and b; thus the outer product of two vectors is a new mathematical entity that
encodes the notion of an oriented plane. If we sweep b out along a , we obtain the same
bivector but with the opposite sign (orientation). Now, by extending this idea, we see
that the outer product between three vectors, a ^ b^ c, is obtained by sweeping the
bivector a ^ b out along c, thus giving an oriented volume or trivector. If we sweep a
across the area represented by the bivector b^ c, we get the same trivector (it can be
shown that it has the same `orientation’); this fact expresses the associativity of the
outer product. Figure 4 summarizes these ideas of the basic elements of the algebra
as geometric objects. In an n-dimensional space, we can have n-vectors, which are
simply oriented n-volumes; thus we see that the outer product is easily generalizable
to higher dimensions, unlike the Gibbs’s vector product, which is restricted to three
dimensions.

The crucial step in developing geometric algebra now comes with the introduction
of the geometric product. We already know what a b and a ^ b are: the geometric
product unites these in the single product ab,

ab = a b + a ^ b:
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e2

–e1 e1

Figure 5. Multiplication on the right by the bivector e 1 e 2 rotates 90 anticlockwise.

This step of summing two di® erent objects is not a totally foreign act; in fact,
we have long been doing a similar thing when carrying out operations with complex
numbers. It turns out that many quantities in physics can be expressed very concisely
and e¯ ciently in terms of multivectors (linear combinations of n-vectors, e.g. a scalar
plus a bivector, etc.); indeed, this combining of objects of di¬erent types appears to
occur at a deep level in physical theory.

(a) Geometric algebra in two dimensions

In two dimensions (a plane), any point can be reached by taking di¬erent linear
combinations of two vectors with di¬erent directions; we say the space is then spanned
by these two basis vectors. Now let these two vectors be orthonormal, i.e. of unit
length and perpendicular to each other, and call them e1 and e2. They satisfy

e1
2 = e2

2 = 1; e1 e2 = 0;

which are the equations that encode these properties. The only other element in our
two-dimensional geometric algebra is the bivector e1 ^ e2; this is the highest grade
element in the algebra (often called the pseudoscalar ).

Let us now look at the properties of this bivector. The  rst thing to note is that

e1e2 = e1 e2 + e1 ^ e2 = e1 ^ e2 = e2 ^ e1 = e2e1;

i.e. the geometric product is a pure bivector because the perpendicularity of the
vectors guarantees that e1 e2 vanishes. Now let us square this bivector:

(e1e2)2 = e1e2e1e2 = e1e1e2e2 = (e1)2(e2)2 = 1:

Note that we have a real geometric quantity that squares to 1! It is therefore
tempting to relate this quantity with the unit imaginary of the complex number
system (a complex number takes the form x + iy where the i is known as the unit
imaginary and has the property that i2 = 1). Thus, in two dimensions, geometric
algebra reproduces the properties of the complex numbers but uses only geometric
objects. In fact, going to geometric algebras of higher dimensions, we begin to see
that there are many objects that square to 1, and that we can use them all in their
correct geometric setting.
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Let us now see what happens when the bivector e1e2 multiplies vectors from the
left and right. Multiplying e1 and e2 from the left gives

(e1e2)e1 = e2e1e1 = e2;

(e1e2)e2 = e1e2e2 = e1:

We therefore see that left multiplication by the bivector rotates vectors 90 clockwise.
Similarly, if we multiply on the right we rotate 90 anticlockwise (see  gure 5):

e1(e1e2) = e2; e2(e1e2) = e1:

4. Rotations

From the properties of the bivector e1e2, it is then very easy to show that a rotation
of a vector a through an angle to a vector a 0 is achieved by the equation

a 0 = Ra ~R;

where R is a quantity we shall call a rotor and is made up of a scalar plus a bivector,

R = cos 1
2

e1e2 sin 1
2

;

and ~R is the same expression but with a `+’. This may at  rst seem like a rather
cumbersome expression to deal with in order to carry out a simple two-dimensional
rotation; however, it turns out that it is generalizable to higher dimensions and
therefore has enormous power.

The above equation, a 0 = Ra ~R, is, in fact, the formula that is used to rotate a
vector in any dimension; if we go to three dimensions, the rotor R will rotate by an
angle in the plane described by a bivector. Therefore, all we need do is replace
the bivector e1e2 with the bivector that de nes the plane of rotation (see  gure 6).
And that is all there is to it; using this very simple expression we  nd that we can
not only rotate vectors, but also bivectors and higher-grade quantities. To carry out
rotations in three dimensions in a manner that extended the concepts we understood
in two dimensions was a problem Hamilton struggled with for many years, before
 nally producing, as his solution, the quaternions. In fact, the elements of Hamilton’s
quaternion algebra are nothing other than elementary bivectors (planes).

Having this very simple idea of a rotor that performs rotations, we can give amaz-
ingly simple geometric interpretations of many otherwise complicated  elds; some
examples are given below.

5. Special relativity

Special relativity was introduced in 1905 and heralded the beginning of a new era
in physics; the departure from the purely classical regime of Newtonian physics. In
special relativity (SR), we deal with a four-dimensional space; the three dimensions
of ordinary Euclidean space, and time. Suppose we have a stationary observer with
whom we can associate coordinates of space and time, this observer will observe
events from his space-time position. Now suppose that we have another observer
travelling at a velocity v; he too will observe events from his continuously changing
space-time position. The problem of how the two observers perceive di¬erent events
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a

R

a’

Figure 6. The rotor R taking the vector a to the vector a 0 . Note that the concept of the perpen-
dicular vector is no longer needed; it is the bivector or plane of rotation that is important.

space

time
bivector

g
2

g
0

g
3

g
0

g
3

Figure 7. Illustration of the four-dimensional space-time axes. One of the time-space bivectors
is shown; as before it de¯nes a plane in our space and can therefore be used in rotating the axes.

is relatively easy when the speed, jvj, is small. But, when jvj approaches the speed
of light, c, and we add in the fact that c must be constant in any frame, the math-
ematics is no longer so straightforward. Conventionally, one can derive a coordinate
transformation between the frames of the two observers, and to move between these
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5 eV

10 eV

5A

barrier

incoming
particle
packet

°

Figure 8. Particle packet incident on a barrier of higher energy than itself.

two frames we apply a matrix transformation known as a Lorentz boost. Geometric
algebra provides us with a beautifully simple way of dealing with special relativistic
transformations using nothing other than the formula for rotations discussed above,
namely a 0 = Ra ~R (Hestenes 1966; Gull et al . 1993). Our space now has four dimen-
sions and our basis vectors are the three space directions and one time direction; let
us call these basis vectors 0, 1, 2 and 3. Because we have four dimensions we
have six bivectors (the three spatial bivectors plus the bivectors made up of space-
time `planes’). The Lorentz boost turns out to be simply a rotor R, which takes
the time axis to a di¬erent position in four dimensions: R 0

~R (see  gure 7). So,
in an elegant coordinate-free way we are able to give the transformations of SR an
intuitive geometric meaning. All the usual results of SR follow very quickly from
this starting point. For example, the complicated formulae for the transformation of
the electric (E ) and magnetic (B )  elds under a Lorentz boost are replaced by the
(much simpler!) result

E 0 + IB 0 = R(E + IB ) ~R;

where I = 0 1 2 3 is the pseudoscalar of four-dimensional space (a 4-volume) and
primes denote transformed quantities.

6. Quantum mechanics

In non-relativistic quantum mechanics, there are important quantities known as Pauli
spinors; using these spinors we are able to write down an equation (the Pauli equa-
tion) that governs the behaviour of a quantum mechanical state in some external
 eld. The equation involves quantities called spin operators, which are convention-
ally seen as completely di¬erent entities to the states. Using the three-dimensional
geometric algebra we are able to write down the equivalent to the Pauli equation in
which the operators and states are all real-space multivectors; indeed, the spinors
become rotors of the type we have discussed earlier.

Now, the extension to relativistic quantum mechanics is easy. Conventionally, this
is described by the Dirac algebra, where the Dirac equation again tells us about the
state of the particle in an external  eld. This time we use the four-dimensional space-
time geometric algebra, and once again the wavefunction in conventional quantum
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mechanics becomes an instruction to rotate a basis set of axes and align them in
certain directions: analogous to the theory of rigid-body mechanics! The simplicity
of this approach has some interesting consequences. The Dirac equation for some
external potential A can be solved, and, by seeing where the time axis, 0, has been
rotated to, we can plot streamlines (lines that give the direction of the particle’s
velocity at each point) of the particle’s motion. We can illustrate the comparison
with conventional theory by a simple example. Consider the case of an incident
particle packet, of energy 5 eV, say, encountering a rectangular barrier potential
of height 10 eV and  nite width, 5 A̧ say (see  gure 8). The theory of quantum
mechanics enables us to predict that despite the seemingly impenetrable barrier,
some of the packet indeed emerges the other side|an e¬ect called tunnelling, which
is of fundamental importance in many of today’s semiconductor devices. However,
when we ask the apparently obvious question of how long does a tunnelling particle
spend inside the barrier, quantum theory provides us with a variety of answers:

(a) this cannot be discussed as time is not a Hermitian observable;

(b) the time is identically zero;

(c) the time taken is imaginary.

Why should quantum mechanics make such strange predictions? The main reason
for the inability to deal with the path of the particle/packet within the barrier lies
in the use of i, the uninterpreted scalar imaginary (i2 = 1); conventionally, the
momentum of the particle within the barrier is taken as a multiple of i and this leads
to these rather unhelpful ideas of imaginary time.

However, the geometric algebra approach tells us that we should plot the stream-
lines representing the path of the particle within the barrier, and, hence,  nd how
much time they really spend inside the barrier. Not too far into the next millennium
it may be possible to compare the times given by this theory with times measured
in actual experiments. Figure 9 shows the predicted streamlines of particles starting
at di¬erent positions within the wave packet of energy 5 eV incident on a barrier
of height 10 eV and width 5 A̧, as depicted above. It can be seen that the particle
streamlines slow up while in the barrier. This is in contrast with some recent discus-
sions of superluminal velocities within such barriers, which have been inferred from
the experimentally observed fact that particles tunnelling through a barrier reach
a target before those travelling an equivalent distance in free space. This apparent
contradiction is explained here by the fact that it is particles near the front of the
wave packet, which already have a head start, that are transmitted and able to reach
the target.y

7. Gravity

Electromagnetism is a gauge theory. A gauge theory occurs if we stipulate that global
symmetries must also become local symmetries (in electromagnetism these symme-
tries are called phase rotations); the price one has to pay to achieve this is the
introduction of forces. In geometric algebra, gravity can also be regarded as a gauge

y It is interesting to note that much of the currently fashionable area of quantum cosmology is based
on the concepts of imaginary time.
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Figure 9. Streamlines of particles (energy 5 eV) incident on a barrier (energy 10 eV). z is the
distance (in angstroms) in the direction of travel and the barrier is between z = 0 and z = 5.
Particles start out at di® erent positions within the wave packet, illustrated by the spread of lines
along the z = 10 axis. Particles near the front of the wave packet are transmitted whereas
those near the back are re° ected.

theory, and here the symmetries are much easier to understand. Suppose we require
that physics at all points of space-time is invariant under arbitrary local displace-
ments and rotations (recall that by rotations in four dimensions we are referring to
Lorentz boosts); the gauge ¯eld that results from such a requirement is the gravi-
tational  eld. A consequence of this theory is the huge simpli cation of being able
to discuss gravity entirely in a ° at space-time background (Lasenby et al . 1998).
There is no need for the complex notions of curved space-time that we are all used
to associating with Einstein’s theory of general relativity (GR). This is where the
GA approach di¬ers from past gauge-theoretic approaches to gravity|these past
theories have still retained the ideas of a curved space-time background. Locally, the
GA gauge theory of gravity reproduces all the results of general relativity, but glob-
ally, the two theories will di¬er when issues of topology are at hand. For example,
whenever there is discussion of singularities or horizons (as with black holes), the GA
theory can give di¬erent predictions to conventional GR. Some improved methods
for solution, working entirely with physical quantities, have also been found in GA.

The GA gauge theory of gravity deals with extreme  elds (i.e.  elds in which singu-
larities occur) in a di¬erent manner to GR. These singularities are treated simply in a
manner analogous to that employed in electromagnetism (using integral theorems).
The interaction with quantum  elds is also di¬erent and suggests an alternative
route to a quantum theory of gravity. In this context, it is also interesting to note
that many of the other fashionable attempts at uniting gravity and quantum theory
(twistors, supergravity, superstrings) also sit naturally within the GA framework.

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


A uni¯ed mathematical language for the 21st century 33

(a)

(b)

z

x

R1 R2 R3

Figure 10. Model of a beam split into very small segments; the deformation is described
by the position and orientation of each segment.

8. Rods, shells and buckling beams

It is not only in the areas of fundamental physics that geometric algebra is a useful
tool. The concept of a frame of reference that varies in either space or time (or both)
is at the heart of much work that tries to understand deforming bodies. Let us take,
as a simple example, a beam of uniform cross-section that is subject to some loading
along its length; the properties of the beam and the loading will determine how the
beam deforms. Mathematically, we can describe the deformation by splitting up the
beam into very small segments and attaching a frame (three mutually perpendicular
axes) to the centre of mass of each segment. Initially, under no loading and no torsion,
we expect the origin, O, of each frame to be along the centreline of the beam and
that each frame is aligned so that the x-axis points along the length of the beam
and the z-axis vertically upwards. Now, as the beam deforms, we can describe its
position at a given time by specifying the position of the origin and the orientation
of the frame for each segment.

Suppose we have a  xed frame at one end of the beam, the frame at segment i
will then be related to this  xed frame by some rotor, Ri. Thus, as we move along
the beam, the orientations are described by a rotor that varies with distance x (see
 gure 10). For a given loading and speci ed boundary conditions one might want
to solve for the rotors to give information on the buckling properties of the beam.
Conventionally, this task has been carried out using a variety of means to encode
rotations; Euler angles, rotational parameters, direction cosines, rotation matrices,
etc. The advantage of using rotors is twofold;  rstly, they automatically have the
correct number of degrees of freedom (three), unlike, for example, direction cosines
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(where we have nine parameters, only three of which are independent), and secondly,
we can solve the full equations (without approximations) in an e¯ cient manner.

One can take this idea of varying frames one stage further. Today, much of the
research in modern structural mechanics has become the province of the mathemati-
cian. In order to deal with thin structures such as rods and shells, where, under
deformation, the surface structure can be fairly complicated, people saw that areas
of mathematics such as di® erential geometry and di® erential topology might pro-
vide useful tools. Indeed, much of the  nite-element code used today in standard
structural engineering packages is written from algorithms based on this mathemat-
ics. The outcome is, however, that many of the engineers can no longer understand
the working of such packages, and must take for granted that what they are using
is correct. On the other hand, using geometric algebra, the problem again reduces
to having rotors that may vary in time and/or space across any given surface; the
mathematics is no harder than one would use to solve simple mechanics problems
(McRobie & Lasenby 1999). The internal  nite-element code thus becomes accessible
to engineers and modi cations are possible.

9. Computer vision and motion analysis

Computer vision is essentially the art of reconstructing or inferring things about the
real three-dimensional world from views of the scene taken by one or several cameras.
The positions and orientations of the cameras may or may not be known and the
internal parameters of the cameras (which determine how the images we see di¬er
from those that would result from a perfect projection onto an image plane) may also
be unknown. From this rather simpli ed description, one can see that a signi cant
amount of three-dimensional geometry will be involved. In fact, since the mid-1980s
much of computer vision has been written in the language of projective geometry
(Faugeras 1993). In classical projective geometry, we de ne a three-dimensional space
whose points correspond to lines through some origin (speci ed point) in a four-
dimensional space. Using such a system, the algebra of incidence (intersections of
lines, planes, etc.) is extremely elegant, and, moreover, transformations that appear
complicated in three dimensions (e.g. projection of points, lines, etc., down onto
a given plane) now become simple. In recent years, people have started to use an
algebra called the Grassmann{Cayley algebra for projective geometry calculations
and manipulations; this is e¬ectively Grassmann’s exterior algebra as it restricts itself
to using only the outer product. Geometric algebra contains the exterior algebra as
a subset and is, therefore, an ideal language for expressing all the ideas of projective
geometry (Hestenes & Ziegler 1991; Lasenby & Bayro-Corrochano 1997). However,
GA also has the notion of an inner product, which often allows us to do things that
would be very di¯ cult with only an outer product.

To illustrate another way in which geometric algebra can be used in computer
vision, let us look at a problem that occurs in motion analysis (the reconstruc-
tion of the three-dimensional motion of an object from the image coordinates of
matched points in several camera views), in scene reconstruction and image registra-
tion (mosaicking a number of di¬erent, overlapping images when limited information
is available). Suppose we have a number of cameras observing an object, we suppose
also, for convenience, that markers are placed on the object so that these points

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


A uni¯ed mathematical language for the 21st century 35

Figure 11. Schematic showing a marked object observed by a system of
cameras feeding data back to the processor.

can be easily extracted from the images. Figure 11 shows a sketch of a three-camera
system.

Now, if we observe a scene with, say, M cameras, we will  nd that in each pair of
cameras there is a subset of the total number of markers that are visible. The  rst
problem is to  nd, using these M images, the best estimates of the relative posi-
tions and orientations of each camera. Once we know the positions of the cameras
we would like to triangulate in order to  nd the three-dimensional coordinates of
other world points visible in a number of images; these problems are not too di¯ cult
for exactly known image points but become much harder if these points are noisy.
There do of course exist conventional techniques for solving these problems, indeed,
photogrammetrists have been doing precisely this for many years. However, the solu-
tions generally involve large optimizations, which are often unstable. This is where
geometric algebra can help. Using GA, it is possible to solve both the calibration
and triangulation problems in a way that takes into account all the data from each
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camera simultaneously. The optimizations involved in the solutions are able to use
both  rst and second analytic (as opposed to numerical) derivativesy of all quanti-
ties to be estimated in a consistent way. Conventionally, it is much harder to take
derivatives of quantities representing rotations. Using GA in this way, it is possible
to produce accurate solutions while reducing the computational load, thus making
it useful in applications that require many such optimizations.

10. Conclusions

We have attempted to give a brief introduction to the mathematical system we refer
to as geometric algebra and to illustrate its usefulness in a variety of  elds. While
we have discussed a range of topics from quantum mechanics to buckling beams,
there are many persuasive examples of the use of GA in physics and engineering
that we have not discussed. These include electromagnetics, polarization, geometric
modelling and linear algebra. The modern tools of mathematics, of which most of us
are familiar with but a few, are varied and complex. In one lifetime of research we can
hope only to master a very few areas. However, if most of physics and mathematics
were to use the same language, the situation would perhaps be di¬erent. We hope
that we have shown in this paper that geometric algebra is a candidate for such a
uni ed language.
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